jump to navigation

Teorema Pythagoras


Teorema Pythagoras

Langsung ke: navigasi, cari

Animasi pembuktian teorema ini

Dalam matematika, teorema Pythagoras adalah suatu keterkaitan dalam geometri Euklides antara tiga sisi sebuah segitiga siku-siku. Teorema ini dinamakan menurut nama filsuf dan matematikawan Yunani abad ke-6 SM, Pythagoras. Pythagoras sering dianggap sebagai penemu teorema ini meskipun sebenarnya fakta-fakta teorema ini sudah diketahui oleh matematikawan India (dalam Sulbasutra Baudhayana dan Katyayana), Yunani, Tionghoa dan Babilonia jauh sebelum Pythagoras lahir. Pythagoras mendapat kredit karena ialah yang pertama membuktikan kebenaran universal dari teorema ini melalui pembuktian matematis.[1]

Ada dua bukti kontemporer yang bisa dianggap sebagai catatan tertua mengenai teorema Pythagoras: satu dapat ditemukan dalam Chou Pei Suan Ching (sekitar 500-200 SM), satunya lagi dalam buku Elemen Euklides.

Teorema

Teorema Pythagoras menyatakan bahwa:

Jumlah luas bujur sangkar pada kaki sebuah segitiga siku-siku sama dengan luas bujur sangkar di hipotenus.

Sebuah segitiga siku-siku adalah segitiga yang mempunyai sebuah sudut siku-siku; kaki-nya adalah dua sisi yang membentuk sudut siku-siku tersebut, dan hipotenus adalah sisi ketiga yang berhadapan dengan sudut siku-siku tersebut. Pada gambar di bawah ini, a dan b adalah kaki segitiga siku-siku dan c adalah hipotenus:

Pythagorean.svg

Pythagoras menyatakan teorema ini dalam gaya goemetris, sebagai pernyataan tentang luas bujur sangkar:

Jumlah luas bujur sangkar biru dan merah sama dengan luas bujur sangkar ungu.

Akan halnya, Sulbasutra India juga menyatakan bahwa:

Tali yang direntangkan sepanjang panjang diagonal sebuah persegi panjang akan menghasilkan luas yang dihasilkan sisi vertikal dan horisontalnya.

Menggunakan aljabar, kita dapat mengformulasikan ulang teorema tersebut ke dalam pernyataan modern dengan mengambil catatan bahwa luas sebuah bujur sangkar adalah pangkat dua dari panjang sisinya:

Jika sebuah segitiga siku-siku mempunyai kaki dengan panjang a dan b dan hipotenus dengan panjang c, maka a2 + b2 = c2.

Pythagorean proof.png

Bukti menggunakan segitiga sama

Teorema.png
\frac{d}{a} = \frac{a}{c} \quad \Rightarrow  \quad d = \frac{a^2}{c}\quad (1)
\frac{e}{b} = \frac{b}{c} \quad \Rightarrow  \quad e = \frac{b^2}{c}\quad (2)

Dari gambar  c = d + e \,\! . Dan dengan mengganti persamaan (1) dan (2):

 c = \frac{a^2}{c} + \frac{b^2}{c}

Mengalikan untuk c:

 c^2 = a^2 + b^2 \,\!.

Lihat pula

Ada ribuan bukti teorema Pythaghoras. Yang ini diciptakan oleh Leonardo da Vinci

Komentar»

No comments yet — be the first.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Logout / Ubah )

Twitter picture

You are commenting using your Twitter account. Logout / Ubah )

Facebook photo

You are commenting using your Facebook account. Logout / Ubah )

Google+ photo

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

Ikuti

Get every new post delivered to your Inbox.

%d bloggers like this: