jump to navigation

Kubus


Untuk kembali klik Matematika

Kubus

1. Pengertian Kubus

Kubus adalah bangun ruang yang terdiri diri dari enam sisi. sisi bagian depan, belakang, kiri, kanan, atas, dan bawah. Kubus memiliki rusuk 12, sudut 8, diagonal sisi 12, diagonal ruang 4, sudut 8, luas dan volume.

a. Sisi/Bidang

Sisi kubus adalah bidang yang membatasi kubus. kubus memiliki 6 buah sisi yang semuanya berbentuk persegi, yaitu (sisi bawah),  (sisi atas),  (sisi depan),  (sisi belakang), (sisi samping kiri), dan (sisi samping kanan).

b. Rusuk

Rusuk kubus adalah garis potong antara dua sisi bidang kubus dan terlihat seperti kerangka yang menyusun kubus. Ada 12 rusuk yang dibentuk oleh satu kubus.

c. Titik Sudut

Titik sudut adalah titik potong antara dua rusuk/ garis.  Pada kubus titik sudutnya dibentuk oleh 3 rusuk. Ada 8 buah titik sudut yang dibentuk oleh kubus. Titik sudut disimbolkan dengan hurup kapital misalkan titik A, B, C, D, E, F, G, dan H.

d. Diagonal Bidang

Coba kamu perhatikan kubus ABCD.EFGH pada Gambar. Pada kubus tersebut terdapat garis AF yang menghubungkan dua titik sudut yang saling berhadapan dalam satu sisi/bidang. Ruas garis tersebut dinamakan sebagai diagonal bidang. Coba kamu sebutkan diagonal bidang yang lain dari kubus pada Gambar.

e. Diagonal Ruang

Sekarang perhatikan kubus ABCD.EFGH pada Gambar 8.4 . Pada kubus tersebut, terdapat ruas garis HB yang menghubungkan dua titik sudut yang saling berhadapan dalam satu ruang. Ruas garis tersebut disebut diagonal
ruang. Coba kamu sebutkan diagonal ruang yang lain dari kubus pada Gambar 8.4 .

f. Bidang Diagonal

Perhatikan kubus ABCD.EFGH pada Gambar 8.5 secara saksama. Pada gambar tersebut, terlihat dua buah diagonal bidang pada kubus ABCD. EFGH yaitu AC dan EG. Ternyata, diagonal bidang AC dan EG beserta dua rusuk kubus yang sejajar, yaitu AE dan CG membentuk suatu bidang di dalam ruang kubus bidang ACGE pada kubus ABCD. Bidang ACGE disebut
sebagai bidang diagonal. Coba kamu sebutkan bidang diagonal lain dari kubus ABCD.EFGH.

Image:ruang_3.jpg

Image:ruang_4.jpg

2. Sifat-Sifat Kubus

Untuk memahami sifat-sifat kubus, coba kamu perhatikan Gambar 8.6. Gambar tersebut menunjukkan kubus ABCD.EFGH yang memiliki sifat-sifat sebagai berikut.

a. Semua sisi kubus berbentuk persegi.

Jika diperhatikan, sisi ABCD, EFGH, ABFE dan seterusnya memiliki bentuk persegi dan me miliki luas yang sama.

b. Semua rusuk kubus berukuran sama panjang.

Rusuk-rusuk kubus AB, BC, CD, dan seterusnya memiliki ukuran yang sama panjang.

c. Setiap diagonal bidang pada kubus memiliki ukuran yang sama panjang.

Perhatikan ruas garis BG dan CF pada Gambar 8.6 . Kedua garis tersebut merupakan diagonal bidang kubus ABCD.EFGH yang memiliki ukuran sama panjang.

d. Setiap diagonal ruang pada kubus memiliki ukuran sama panjang.

Dari kubus ABCD.EFGH pada Gambar 8.6 , terdapat dua diagonal ruang, yaitu HB dan DF yang keduanya berukuran sama panjang.

e. Setiap bidang diagonal pada kubus memiliki bentuk persegipanjang.

Perhatikan bidang diagonal ACGE pada Gambar 8.6 . Terlihat dengan jelas bahwa bidang diagonal tersebut memiliki bentuk persegipanjang.

3. Menggambar Kubus

Kamu telah memahami pengertian, unsur, dan sifat-sifat kubus. Sekarang, bagaimana cara menggambarnya? Menggambar bangun ruang khususnya kubus, lebih mudah dilakukan pada kertas berpetak. Adapun langkah-langkah yang harus dilakukan adalah sebagai berikut.

• Gambarlah sebuah persegi, misalkan persegi ABFE yang berperan sebagai sisi depan. Bidang ABFE ini disebut sebagai bidang frontal, artinya bidang yang dibuat sesuai dengan bentuk sebenarnya. Coba perhatikan Gambar 8.7 (a) .
• Langkah selanjutnya, buatlah ruas garis yang sejajar dan sama panjang dari setiap sudut persegi yang telah dibuat sebelumnya. Panjang ruasruas garis tersebut kurang lebih setengah dari panjang sisi persegi dengan kemiringan kurang lebih 45°. Perhatikan Gambar 8.7 (b) . Garis AD digambar putus-putus, ini menunjukkan bahwa ruas garis tersebut terletak di belakang persegi ABFE.
• Kemudian, buatlah persegi dengan cara meng hubungkan ujung-ujung ruas garis yang telah dibuat sebelumnya. Beri nama persegi CDHG. Persegi tersebut berperan sebagai sisi belakang dari kubus yang akan dibuat. Coba perhatikan Gambar 8.7 (c). Pada gambar tersebut, terlihat bahwa sisi atas, sisi bawah, dan sisi samping digambarkan berbentuk jajargenjang. Bidang seperti ini disebut bidang ortogonal, artinya bidang yang digambar tidak sesuai dengan keadaan sebenarnya.

Image:ruang_5.jpg

4. Jaring-Jaring Kubus

Untuk mengetahui jaring-jaring kubus, lakukan kegiatan berikut dengan kelompok belajarmu.

Image:ruang_6.jpg

Image:ruang_7.jpg

5. Luas Permukaan Kubus

Misalkan, kamu ingin membuat kotak makanan berbentuk kubus dari sehelai karton. Jika kotak makanan yang diinginkan memiliki panjang rusuk 8 cm, berapa luas karton yang dibutuhkan untuk membuat kotak makanan tersebut? Masalah ini dapat diselesaikan dengan cara menghitung luas permukaan suatu kubus.

Coba kamu perhatikan Gambar 8.10 berikut ini.

Image:ruang_8.jpg

Image:ruang_9.jpg

6. Volume Kubus

Misalkan, sebuah bak mandi yang berbentuk kubus memiliki panjang rusuk 1,2 m. Jika bak tersebut diisi penuh dengan air, berapakah volume air yang dapat ditampung? Untuk mencari solusi permasalahan ini, kamu hanya perlu menghitung volume bak mandi tersebut. Bagaimana mencari volume kubus? Untuk menjawabnya, coba kamu perhatikan Gambar 8.11

Image:ruang_10.jpg

Untuk kembali klik Matematika

Komentar»

1. sintya marissa - April 28, 2013

lengkap banget

2. Diajeng - April 17, 2016

Makasih ya,saya sekarang sudah bisa


Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

%d blogger menyukai ini: